
The instability of the spiral wave induced by the deformation of elastic excitable media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 385105

(http://iopscience.iop.org/1751-8121/41/38/385105)

Download details:

IP Address: 171.66.16.150

The article was downloaded on 03/06/2010 at 07:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/38
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 385105 (11pp) doi:10.1088/1751-8113/41/38/385105

The instability of the spiral wave induced by the
deformation of elastic excitable media

Jun Ma1,2, Ya Jia1, Chun-Ni Wang2 and Shi-Rong Li2

1 Department of Physics, Central China Normal University, Wuhan 430079,
People’s Republic of China
2 School Of Science, Lanzhou University of Technology, Lanzhou 730050,
People’s Republic of China

E-mail: jiay@phy.ccnu.edu.cn (Ya Jia) and hyperchaos@163.com (Jun Ma)

Received 26 June 2008, in final form 28 July 2008
Published 28 August 2008
Online at stacks.iop.org/JPhysA/41/385105

Abstract
There are some similarities between the spiral wave in excitable media and in
cardiac tissue. Much evidence shows that the appearance and instability of
the spiral wave in cardiac tissue can be linked to one kind of heart disease.
There are many models that can be used to investigate the formation and
instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is
interesting to simulate the transition and instability of the spiral wave induced by
media deformation. For simplicity, a class of the modified Fitzhugh–Nagumo
(MFHN) model, which can generate a stable rotating spiral wave, meandering
spiral wave and turbulence within appropriate parameter regions, will be used to
simulate the instability of the spiral wave induced by the periodical deformation
of media. In the two-dimensional case, the total acreage of elastic media is
supposed to be invariable in the presence of deformation, and the problem is
described with Lx × Ly = N × �xN × �y = L′

xL
′
y = N × �x ′N × �y ′.

In our studies, elastic media are decentralized into N × N sites and the space
of the adjacent sites is changed to simulate the deformation of elastic media.
Based on the nonlinear dynamics theory, the deformation effect on media is
simplified and simulated by perturbing the diffusion coefficients Dx and Dy

with different periodical signals, but the perturbed diffusion coefficients are
compensatory. The snapshots of our numerical results find that the spiral wave
can coexist with the spiral turbulence, instability of the spiral wave and weak
deformation of the spiral wave in different conditions. The ratio parameter ε

and the frequency of deformation forcing play a deterministic role in inducing
instability of the spiral wave. Extensive studies confirm that the instability of
the spiral wave can be induced and developed only if an appropriate frequency
for deformation is used. We analyze the power spectrum for the time series
of the mean activator of four sampled sites which are selected symmetrically
in different cases, such as the condition that the spiral wave coexists with the
spiral turbulence, spiral wave without evident deformation, complete instability
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of the spiral wave (turbulence) and weak deformation of the spiral wave. It is
found that more new peaks appear in the power spectrum and the distribution
of frequency becomes sparser when the spiral wave encounters instability.

PACS numbers: 47.54.−r, 05.45.−a

1. Introduction

Spiral waves are often observed in the reaction–diffusion system [1–6], such as the well-known
Belousov–Zhabotinsky (BZ) reaction [5–7], electrical activity in cardiac tissue [9, 10] and CO
oxidation on Pt(1 1 0) surface [3, 8, 11], and much attention has been paid to the mechanism
of appearance and instability [12–15] of the spiral wave. There are some similarities between
the spiral waves in the excitable media and those in the cardiac tissue. It is found that the
instability of the spiral wave can induce spiral turbulence, and the breakup of the spiral wave
in cardiac tissue can cause a rapid death of the heart, which is called ventricular fibrillation
[16, 17]. Extensive investigations have been carried out so that some effective schemes
[18, 19] can be used to prevent the appearance and breakup of the spiral wave in cardiac tissue.
It does not mean that the topic of the spiral wave just focuses on removing the useless traveling
wave and turbulence in cardiac tissue because the spiral wave is also a hot topic in pattern
formation. Usually, the modified Fitzhugh–Nagumo equation (MFHN) [20, 21] is often used
to describe the spiral wave and spiral turbulence in the excitable and/or oscillatory media in
appropriate parameter regions, respectively.

To date, many schemes have been proposed to eliminate the spiral wave and turbulence
in excitable and/or oscillatory media. These schemes include periodical forcing [22–25],
feedback [26–30], parameter perturbation [31, 32], etc. On the other hand, the mechanism
of the spiral wave breakup has been investigated extensively [33–37]. It is reported that
external forcing can induce geometrical deformation in flexible media and thus patterns are
generated [38]. In [39], Zhang et al reported that the mechanical force can cause breakup of
the spiral wave in excitable media. As we know, cardiac tissue can be considered elastic tissue,
and the periodical shrinkage and stretch can induce transition of a traveling wave in cardiac
tissue. Therefore, it is more interesting to extend the previous results [39] in which they
discussed the breakup of the spiral wave by imposing lateral mechanical force on the media
(along the long direction or landscape orientation, along the x- or y-axis). In this paper, we
investigate the instability of the spiral wave induced by the geometrical deformation of media
along lengthways and transverse ways (along the x and y axes). Furthermore, we will discuss
how to detect and identify the instability of the spiral wave by analyzing the distribution of
frequency and mean frequency of a few sampled sites (activator). In the two-dimensional
spatial space, the elastic media require that the total square area of the system should be
supposed to be invariable during the course of system deformation. For example, the length
size Lx and breadth Ly are replaced by the variables L′

x and L′
y , and it requires that the formula

L′
x × L′

y = Lx × Ly should be satisfied as well. In our numerical simulation tests, the elastic
media are decentralized into N × N sites and the deformation effect on the transition of the
spiral wave will be discussed with the nonlinear dynamics theory. It will be confirmed that the
deformation effect can be simulated and described by changing the diffusion coefficients Dx

and Dy with different functions (Dx increases but Dy decreases, vice versa), and it is different
from the previous works which just changed the controllable diffusion coefficients Dx and Dy

by the same step or function.
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2. Model and geometrical deformation of media

2.1. A model of the modified Fitzhugh–Nagumo model

The modified Fitzhugh–Nagumo (MFHN) model [20, 21] is often used to describe the
dynamics of the spiral wave in the excitable media. It confirmed that meandering spiral
wave and spiral turbulence can also be observed in the MFHN model within appropriate
parameters. In this paper, the MFHN model is used to describe the transition of the spiral
wave in excitable media by selecting appropriate parameters, and the model is often given
with ⎧⎪⎪⎨

⎪⎪⎩

∂u

∂t
= ε−1u(1 − u)

(
u − v + b

a

)
+ D∇2u

∂v

∂t
= f (u) − v

(1)

f (u) =
⎧⎨
⎩

0 0 � u < 1/3
1 − 6.75u(u − 1)2 1/3 � u � 1
1 1 < u.

(2)

System (1) is an activator controller two-variable reaction–diffusion model, where
variables u and v describe the activator and inhibitor respectively. D is the diffusion coefficient,
a, b and ε are parameters. In the case of the two-dimensional space ∇2 = ∂2/∂x2 + ∂2/∂y2,
the dynamics is investigated by varying ε and fixing a = 0.84 and b = 0.07. The dynamics of
the system is decided by the decisive parameters b and ε; the parameter ε describes the ratio
of the time scales of the fast activator u and the slow inhibitor variable v, and parameter b
determines the excitation threshold. The three parameters are endowed with different physical
meanings for different real systems; for example, the external controllable parameters (the
crystal temperature, partial pressures of CO and oxygen) in the model of the CO oxidation
on Pt(1 1 0) are mapped into the three parameters a, b and ε. It is found that the spiral wave
is stable when 0.01 < ε < 0.06 at a = 0.84 and b = 0.07, while the spiral wave becomes
unstable for ε > 0.06 and it finally steps into turbulence after ε > 0.07. In this paper, time
step size h = 0.02, sites N × N = 256 × 256, site space �x = �y = 100/256 and the
diffusion coefficient D = 1 without a special statement. The numerical algorithm applied for
the simulation is the Euler forward difference algorithm with the non-flux boundary conditions
being used.

2.2. The problem of the geometrical deformation

As mentioned above, the spiral wave in cardiac tissue is harmful and the instability of the
spiral wave in cardiac tissue is dangerous. There are many theoretical models to study the
formation and instability of the spiral wave in excitable and oscillatory media, and we would
use the famous MFHN model to study the instability of the spiral wave in excitable media
when the deformation of the elastic media is considered. As we know, cardiac tissue is elastic
and excitable; in the two-dimensional case, the property of elastic can be simplified as the
size of the media is kept invariable. On the other hand, any electric shock or external forcing
imposed on cardiac tissue often causes it to shrink or expand in rhythm. For simplicity, we
suppose that the media are deformed periodically. Now we will use the nonlinear dynamics
theory to describe and discuss these problems according to the assumptions mentioned above.
In our studies, the size of the media is supposed to be Lx × Ly and the media are composed
of N × N sites before deformation is imposed. The size of the media is described by L′

x × L′
y
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and the sites of the media are still N × N . Therefore, the geometrical deformation of the
elastic media can be described by

Lx × Ly = N × �xN × �y = L′
xL

′
y = N × �x ′N × �y ′, (3)

where the sites of the media are supposed to be invariable and the deformation just changes
the space size of the adjacent sites. It is interesting to mark the new position of the sites
with (x ′, y ′) and the original position with (x, y) though we cannot assure the correlation
between the deformation degree and the external forcing exactly. Therefore, we will discuss
the transition of the spiral wave in a theoretical and numerical way. Then the correlation of
sites position can be described by

x ′(t) = Af (t)x(t); y ′(t) = y(t)/(Af (t)), (4)

where Af (t) describes the degree of geometrical deformation, and A is the maximal amplitude
of deformation and A > 0. 0 � x = (i − 1)�x � Lx, 0 � y = (j − 1)�y � Ly, 0 � x ′ =
(i − 1)�x ′ � L′

x, 0 � y ′ = (j − 1)�y ′ � L′
y, i, j = 1, 2, 3, . . . , 256. Now it is important to

discuss and explain the transformation shown in equation (4),

Lx = Ly = L0, �x = �y = L0/N (5)

L′
x = L0 + L0Af (t) = L0(1 + Af (t)), L′

y = L2
0

/
L′

x = L0/(1 + Af (t)) (6)

�x ′ = L′
x/N = (1 + Af (t))�x, �y ′ = L′

y/N = �y/(1 + Af (t)). (7)

According to equation (3), the number of sites is supposed to be invariable and
each site (x, y) can be marked with (i, j) and x = (i − 1)�x, y = (j − 1)�y,
i, j = 1, 2, 3, . . . , N, x ′ = (i − 1)�x ′, y ′ = (j − 1)�y ′. Clearly, the diffusion factor
D∇2 is sensitive to the change of space size of the adjacent sites and the problem can be
defined by

D
∂2

∂x ′2 = D
∂

∂x ′

(
∂

Af (t)∂x

)
= D

A2f 2(t)

∂2

∂x2
(8)

D
∂2

∂y ′2 = D
∂

∂y ′

(
Af (t)∂

∂y

)
= DA2f 2(t)

1

∂2

∂y2
. (9)

According to equation (1), from a mathematical point of view, the parameter for
the diffusion factor is changed as the deformation is considered. Equations (8) and (9)
show that the diffusion coefficients are changed as D′

x = DA2f 2(t) = DxA
2f 2(t) and

D′
y = D/(A2f 2(t)) = Dx/(A

2f 2(t)) . In a practical way, it differs from the popular
scheme by perturbing the diffusion coefficient with the time function arbitrarily, for example,
D′

x = f (t)Dx and D′
y = f (t)Dy . In this paper, equations (7)–(9) throw light on the dynamics

and transition of the spiral wave defined with equation (1). In fact, the deformation degree is
reasonable within an appropriate threshold for the elastic media. For simplicity, it is supposed
to be the maximal amplitude of the deformation Amax = 0.4 in this paper. As we know, the
ratio parameter ε also plays an important role in the transition of the spiral wave, so it is
necessary to discuss the problem with a different ratio parameter ε.

3. Numerical simulation results and discussions

In the following numerical simulation, appropriate initials are used to generate a stable rotating
spiral wave in the media with a transient period of about 200 time units and then the geometrical
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(a) (b)

(e)

( f )
(c) (d )

Figure 1. Evolution of the deformed spiral wave, ε = 0.02, Af (t) = 0.4 cos 0.2t , for t = 0 (a),
t = 1000 (b), t = 1400 (c) and t = 1800 (d) time units, and the snapshots are shown in gray. Power
spectrum for the time series of mean activator of the four sampled sites u(88, 128), u(128, 88),
u(128, 168), u(168, 128).

deformation will be introduced into the spiral wave. Parameters a = 0.84, b = 0.07, sites
number N = 256, time step h = 0.02 and site space �x = �y = 100/256. The elastic media
responds to the external deformation synchronically as the external forcing is imposed on the
whole media, no matter whether it is periodical or not. In this paper, we focus on the problem
that the elastic media stretch and/or shrink in a periodical way due to the external periodical
forcing on the media. Therefore, the problem is simplified as Af (t) = Amax cos ωt , and the
parameter ω is used to describe the angle frequency of the deformation. The snapshots of the
spiral wave are observed and plotted to discuss the transition of the spiral wave induced by
the external periodical forcing-induced deformation of the media. In our studies, we mainly
discuss the transition of the spiral wave induced by the action of a different angle frequency ω

and ratio parameter ε.
The snapshots of figure 1 confirm that the spiral wave is just compressed in one

direction while another orthogonal direction is stretched. Furthermore, other angle frequencies
ω = 0.05, 0.1, 0.3, 0.4 are checked for ε = 0.02 and it is found that the spiral wave is shrinked
or stretched alternatively. To estimate the distribution of frequency, the time series of four
sampled sites u(88, 128), u(128, 88), u(128, 168), u(168, 128) are analyzed with an FFT
scheme, and the power spectra are plotted in figures 1(e) and (f ). Clearly, the four sampled
sites lie in the media symmetrically along four different directions so that it can foretell the
change of the traveling wave in the media. We will compare the distribution of frequency in
figure 1 with other cases in the following to estimate whether the instability of the spiral wave
is induced.

Then we investigate the case for ε = 0.03 and it just finds that the spiral wave is stretched
or shrinked for ω = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. Extensive numerical studies are given to
investigate the problem for ε = 0.04 at different angle frequency ω. It is found that the
spiral wave can coexist with the spiral turbulence at ω = 0.1 with ε = 0.04 while other
angle frequencies ω = 0.05, 0.2, 0.3, 0.4, 0.5 just cause the spiral wave to become deformed
without instability. Then the ratio parameter ε is increased to investigate the problem with
other angle frequencies. It is found that the transition and evolution of the spiral wave is
complex at ε = 0.045, and the relevant results are plotted in figure 2.

5
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(a) (b) (c)

(d ) (e) ( f )

Figure 2. Evolution of the deformed spiral wave, ε = 0.045, Af (t) = 0.4 cos 0.05t , for t = 200
(a), t = 400 (b), t = 600 (c), t = 1000 (d), t = 1400 (e) and t = 1800 (f ) time units, and the
snapshots are shown in gray.

(a) (b)

(e)

( f )
(c) (d )

Figure 3. Evolution of the deformed spiral wave, ε = 0.045, Af (t) = 0.4 cos 0.2t , for t = 200 (a),
t = 600 (b), t = 1400 (c) and t = 1800 (d) time units, and the snapshots are shown in gray. Power
spectrum for the time series of mean activator of the four sampled sites u(88, 128), u(128, 88),
u(128, 168), u(168, 128).

The snapshots of figure 2 show that the spiral wave can coexist with the spiral turbulence
and the spiral wave is surrounded by the spiral turbulence at ω = 0.05. Then other angle
frequencies are checked and it is found that the spiral wave still can coexist with the spiral
turbulence though the area of the spiral turbulence becomes bigger at ω = 0.08, 0.09, 0.1, 0.12.
Then the angle frequency is increased further and the results are plotted in figure 3.

The snapshots of figure 3 confirm that the spiral wave begins to lose stability from the
center of the media and finally the whole media encounter complete instability. The center
instability seems like the Doppler instability, which results from the meandering of the tip
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(a) (b)

(c) (d )

(e)

( f )

Figure 4. Evolution of the deformed spiral wave, ε = 0.05, Af (t) = 0.4 cos 0.05t , for t = 200
(a), t = 1000 (b), t = 1400 (c) and t = 1600 (d) time units, and the snapshots are shown in
gray. Power spectrum for the time series of mean activator of the four sampled sites u(88, 128),
u(128, 88), u(128, 168), u(168, 128).

of the spiral wave. In fact, the periodical forcing induces deformation of the media and the
diffusion intensity thus is changed to force the spiral tip to the meander. An appropriate angle
frequency of forcing can cause the tip of the spiral wave to move randomly, thus the center
instability is generated. The distributions of frequency of the four sampled sites are also
calculated and the spectra of power are also plotted in figures 3(g) and (h). Comparing the
results in figures 3(g) and (h) with the results in figures 1(e) and (f ), it is found that more
prominent peaks are found and the maximal power is decreased. In the following section, we
will discuss the differences of the power spectrum in different cases including the state of weak
deformation, coexistence of the spiral wave and spiral turbulence and no evident deformation,
etc. The angle frequency is increased and it is found that the spiral wave becomes shrunkun
and/or stretched at ω = 0.3, 0.4, 0.5.

As we know, the frequency of the rotating spiral wave in the Barkley model (which is
similar to the MFHN in this paper) is mainly decided by the parameters a, b, ε [40, 41], and
the parameter ε plays an important role in deciding the frequency of the spiral wave at fixed
a and b. Therefore, it is interesting to investigate the transition of the spiral wave with the
other different parameter ε. The transition of the spiral wave for ε = 0.05 with different angle
frequencies and the results are plotted in figure 4.

The snapshots of figure 4 show that the spiral wave is surrounded by the spiral turbulence
at ε = 0.05 and ω = 0.05. The coexistence of the spiral wave and spiral turbulence is
defined as that the spiral wave occupies the center of the media and it is always surrounded
by the spiral turbulence. That is to say, the spiral wave in the center is not a fast enough
traveling wave [42] to remove the spiral turbulence completely. Extensive studies confirm
that the coexistence of the spiral wave and turbulence is still observed at ε = 0.05 and
ω = 0.1. The power spectra for the four time series of four sampled sites are also illustrated in
figures 4(e) and (f ) at the condition that the spiral wave coexists with the turbulence. The spiral
wave loses stability within a few time units when the angle frequency is increased further; for
example, the whole media finally become spiral turbulent and the spiral wave can be invaded
by the spiral turbulence for ω = 0.2, 0.3, 0.4, 0.5. Finally, we study the case for ε = 0.06

7
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(a) (b)

(d )(c)

Figure 5. Evolution of the deformed spiral wave, ε = 0.06, Af (t) = 0.4 cos 0.05t , for t = 200
(a), t = 600 (b), t = 1400 (c) and t = 1800 (d) time units, and the snapshots are shown in gray.

and some results are shown in figure 5. The snapshots of figure 5 find that the spiral wave and
spiral turbulence still can coexist with each other under the small angle frequency. However,
the spiral wave encounters instability very soon and the whole media become turbulent when
the angle frequency is increased further, for example, ω = 0.08, 0.1, 0.2, 0.3, 0.4, 0.5. To
our knowledge, the frequency of the spiral wave decreases with the increasing parameter ε;
therefore, it becomes easy for the spiral wave to encounter instability with the increasing
deformation frequency at a bigger parameter ε.

Above all, we have studied the instability of the spiral wave induced by the deformation
of the media resulting from the periodical forcing by observing the snapshots of the activator.
As we know, the noise can affect the dynamics of the excitable media and noise with
enough intensity can induce the instability of the spiral wave [43]. The spatiotemporal
noise is often defined as η(x, y, t), and mean 〈η(x, y, t)〉 = 0 and 〈η(x, y, t)〉〈η(x ′, y ′, t ′)〉 =
D0δ(x − x ′)δ(y − y ′)δ(t − t ′). The coefficient D0 is the intensity of noise. We will discuss
the case with weak intensity of noise and the numerical results are plotted in figure 6.

The snapshots of figure 6 confirm that no evident deformation of the spiral wave can be
observed and the power spectrum for the time series of four sampled sites is illustrated in
figures 6(c) and (d). Now it is important to estimate whether the instability of the spiral wave
can be induced or not in a practical way though we can conclude the results by observing the
snapshots of the activator. That is to say, we will discuss the difference of distribution of the
frequency or spectrum in different cases, including the cases such as no evident deformation
of the spiral wave as in figure 6, the weak deformation of the spiral wave as in figure 1, the
coexistence of the spiral wave and turbulence as in figures 2, 4, 5, and the complete turbulence
as in figure 3. In the case of no evident deformation of the spiral wave as in figure 6, the power
spectrum marks the peak clear and prominent, and the peaks in the power spectrum are few
and countable. In the case of weak deformation of the spiral wave as in figure 1, some new
peaks are observed but the highest peak still dominates among all the frequencies. In the case
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(a) (b)

(c)

(d )

Figure 6. Distribution of frequency and evolution of the spiral wave when the weak deformation
is induced by weak spatiotemporal noise, for t = 200 (a) and t = 2000 (b) time units.
ε = 0.045, Af (t) = η(x, y, t), the noise intensity D0 = 0.000 06 and for t = 200 (a), and
t = 2000 (b) time units, and the snapshots are shown in gray. Power spectrum for the time series
of mean activator of the four sampled sites u(88, 128), u(128, 88), u(128, 168), u(168, 128).

of the spiral wave coexisting with the spiral turbulence as in figure 4 (or 2, 5), we can find that
more new peaks (frequencies) appear and the distribution of frequency is dense. Furthermore,
in the case of complete instability of spiral wave as in figure 3, it is found that more peaks
appear and the distribution of frequency is sparse. To the best of our knowledge, remarkable
deformation of the spiral wave introduces local deformation in the media and more new spiral
segments with new frequencies are induced, and it can step into turbulence finally as long as
the deformation surpasses a threshold. For simplicity, we can detect and measure whether the
instability of the spiral wave is induced or not by analyzing the power spectrum for time series
of four sampled sites selected as in this paper, which lie in the media symmetrically along
different directs. The results in figures 1(e), (f ), 3(g), (h), 4(e), (f ) and 6(c), (d) could be
used to estimate whether the spiral wave encounters instability or not. In a word, analyzing
the spectrum for the distribution of the frequency will tell us the truth we expect. Certainly, we
never intend to deny the effective scheme by observing the snapshots to study the transition
of the spiral wave directly.

4. Discussion and conclusion

In this paper, we investigate the transition of the spiral wave when periodical forcing-induced
deformation is imposed on the whole media. Based on the nonlinear dynamics theory, the
deformation effect on the spiral wave is simplified and simulated by adjusting the diffusion
coefficients Dx and Dy with different periodical signals. It is different from the previous
works which perturbs the controllable parameter with the same time-function synchronically,
for example, the diffusion coefficients Dx and Dy are perturbed with the same signal. Our
results focus on the elastic media, and the acreage is supposed to be invariable thus the
shrinkage and stretch are compensatory. Our numerical results find that the transition of the
spiral wave is decided by the ratio parameter ε of the media and the frequency of the external
forcing deformation. It is interesting to find that the spiral wave can coexist with the spiral
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turbulence in an appropriate frequency of the external forcing deformation. We can conclude
whether the spiral wave encounters instability or not by analyzing the distribution of the
frequency of four sampled sites (activator) which often are selected symmetrically. According
to the power spectrum for the time series of the four sampled sites, it is found that more
new peaks appear and the distribution of the frequency becomes sparse as long as the spiral
wave comes close to the critical condition for instability. Therefore, we suggest that we can
detect four selected sites (selected symmetrically) and analyze the power spectrum to judge
whether the spiral wave will encounter an instability. Comparing the results in this paper with
the previous works, we extend the previous works and our studies are closer to describing
the problem of instability of the spiral wave induced by the deformation in the media. The
deformations along the lengthways and transverse ways are considered simultaneously, so that
it can give some clue to studying the deformation of the spiral wave in cardiac tissue due to
the shrinkage of tissue though we do not use the real cardiac tissue model.
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